CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae

Jae Moon Lee and Arno L. Greenleaf

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina

We previously purified a yeast protein kinase that specifically hyperphosphorylates the carboxylterminal repeat domain (CTD) of RNA polymerase II largest subunit and showed that this CTD kinase consists of three subunits of 58, 38, and 32 kDa. We have now cloned, sequenced, and characterized CTK1, the gene encoding the 58 kDa α subunit. The CTK1 gene product contains a central domain homologous to catalytic subunits of other protein kinases, notably yeast CDC28, suggesting that the 58 kDa subunit is catalytic. Cells that carry a disrupted version of the CTK1 gene lack the characterized CTD kinase activity, grow slowly and are cold-sensitive, demonstrating that the CTK1 gene product is essential for CTD kinase activity and normal growth. While ctk1 mutant cells do contain phosphorylated forms of the RNA polymerase II largest subunit, these forms differ from those found in wild type cells, implicating CTK1 as a component of the physiologically significant CTD phosphorylating machinery. As befitting an enzyme with a nuclear function, the N-terminal region of the CTK1 protein contains a nuclear targeting signal.

he carboxyl-terminal domain (CTD) of the L largest subunit (subunit II_a, 210 ± 10 kDa) of eukaryotic RNA polymerase II comprises multiple repeats of a unique heptamer sequence, Tyr-Ser-ProThr-Ser-Pro-Ser (Allison et al., 1985; Corden et al., 1985; Zehring et al., 1988; reviewed in Corden, 1990). Hyperphosphorylation of this domain in vivo and in vitro generates a form of the subunit with reduced mobility in SDS polyacrylamide gels, subunit II_o (Dahmus, 1981; Buhler et al., 1976; Bell et al., 1977; Cadena and Dahmus, 1987; Lee and Greenleaf, 1989; Cisek and Corden, 1989; Guilfoyle, 1989; Corden, 1990). As one approach to investigating the phosphorylation of the CTD, we used CTD-containing fusion proteins as substrates and purified a CTD kinase to near homogeneity from the yeast Saccharomyces cerevisiae; we also detected similar activities in extracts of insect and mammalian cells (Lee and Greenleaf, 1989). The yeast CTD kinase consists of three subunits (α , β , γ) of 58, 38, and 32 kDa, respectively, and it extensively phosphorylates the CTD of the largest subunit of RNA polymerase II to generate a mobility-shifted band in SDS gels. The properties of the yeast CTD kinase enzyme, including substrate specificity, cyclic nucleotide independence, and subunit composition, reveal that the enzyme is distinct from previously described protein kinases. A notable feature of CTD phosphorylation by the yeast kinase is its apparent processivity or cooperativity (Lee and Greenleaf, 1989).

Using as substrate short synthetic peptides containing 4 or 6 heptamer repeats, Cisek and Corden (1989) purified a mouse cell CTD kinase composed of two subunits, the smaller of which (34 kDa) is a murine homologue of the

Received May 13, 1991; revision accepted May 24, 1991.

Correspondence: Arno L. Greenleaf, Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 Tel (919) 684-4030 Fax (919) 684-8885

^{© 1991} by the University of Health Sciences/The Chicago Medical School. All rights reserved. 1052-2166/91/0102/149-19\$2.00

Schizosaccharomyces pombe cell cycle control protein, cdc2, itself the functional homologue of S. cerevisiae CDC28 (see also Zhang and Corden, 1991a). However, results presented below argue that this mouse enzyme is not the mammalian counterpart of the yeast CTD kinase we have characterized. Another mammalian protein kinase activity was partially purified on the basis of its phosphorylation of a synthetic repeat peptide (Stevens and Maupin, 1989); intriguingly, this activity is inhibited by the nucleoside analogue DRB, which affects transcription in vitro and in vivo (reviewed in Sawadogo and Sentenac, 1990). In addition, a repeat peptide phosphorylating activity has been detected in stressed HeLa cells (Legagneux et al., 1990). How these mammalian activities (and a plant CTD kinase activity [Guilfoyle, 1989]) may be related to each other or to the yeast CTD kinase is not yet clear. For example, the activity from mouse does not seem to display the apparent processivity that characterizes the yeast enzyme (Zhang and Corden, 1991b).

While the CTD is essential in vivo (Nonet et al., 1987; Zehring et al., 1988; Bartolomei et al., 1988; Allison et al., 1988), it is not required for accurate transcription at several promoters in vitro (Zehring et al., 1988; Kim and Dahmus, 1989; Thompson et al., 1989; Zehring and Greenleaf, 1990; Buratowski and Sharp, 1990), although it is required for some (Thompson et al., 1989). Neither its specific functions nor the role of its phosphorylation has been determined, though several possibilities have been suggested (Allison et al., 1985; Corden et al., 1985; Sigler, 1988; reviewed in Corden, 1990; also see Discussion). Studies on the in vitro phosphorylation of mammalian polymerase IIA initiating at the adenovirus-2 major late promoter suggest that CTD phosphorylation occurs after polymerase's interaction with the promoter but before initiation of transcription (Laybourn and Dahmus, 1990). However, since equally accurate and efficient initiation and elongation are carried out by RNA polymerase II entirely lacking the CTD (Kim and Dahmus, 1989; see also Zehring et al., 1988), the functional significance of the observed phosphorylation is not yet clear. Determining the relevance of phosphorylation to in vitro initiation and elongation will require establishing a system in which transcription is dependent on the presence and phosphorylation state of the CTD.

With the purification of the yeast CTD kinase, it became feasible to consider cloning genes encoding the kinase subunits as a foundation for genetic investigations which could help to elucidate the in vivo roles of CTD phosphorylation. Toward this end we have screened an expression library with antibodies raised against the CTD kinase, and we report here the isolation and characterization of *CTK1*, the gene encoding the α subunit of the enzyme. In addition, we present results of experiments utilizing *ctk1* mutant cells which demonstrate that CTK1-containing CTD kinase plays an important role in vivo and which suggest that it is involved in physiologically significant CTD phosphorylation.

Materials and methods

Strains and media

The strains used in this study are S. cerevisiae DBY 1091 (ala ura3-52/ura3-52 + lhis4 + lcan1 + lade2-101, ATCC #52278), SGY65 (ala ura3-521 ura3-52 leu2-3,112/leu2-3,112 his3/his3 lys2/lys2 +|ade2-101| +|trp1|, from Dr. S. Garrett, Duke University). A yeast strain containing 10⁵/₇ repeats of the CTD, CY199 (a HO-LacZ RPB1A :: HIS3 pRY2203: LEU2 lys2-801 ade2-101 trp1 Δ -1 $ura3-52 leu2\Delta-1$) was a gift from I. Herskowitz (University of California, San Francisco). Plasmid pRY2203 carries the *rpb1* allele from strain C3 (Nonet et al., 1987). Cells were cultured in YPD (1% yeast extract, 2% peptone, 2% glucose) or minimal media (2% glucose, 0.67% yeast nitrogen base without amino acids) supplemented with required nutrients as described (Sherman et al., 1986).

E. coli XL·1 Blue (Bullock et al., 1987) was obtained from Stratagene. E. coli cells were grown in LB broth (Maniatis et al., 1989).

Antibodies and Western blotting

To raise antibody against the CTD kinase, 0.1 mg of Mono S purified CTD kinase (about 50%pure) was subjected to electrophoresis in a 12% polyacrylamide SDS gel which was stained with 1 M KCl at 4°C. The three bands of the kinase were cut out and frozen. They were then ground in a mortar in liquid N₂, mixed with 0.5 ml complete Freund's adjuvant (Gibco), and injected subcutaneously into a rabbit. A second injection using incomplete Freund's adjuvant was performed similarly four weeks later. Serum was prepared two weeks after the second injection. Affinity purification of antibody against each subunit of the kinase was performed using purified CTD kinase bound to nitrocellulose membrane, essentially as described (Kelly et al., 1986). The nitrocellulose membrane with the enzyme bound was used several times, and purified antibodies were pooled. The titer of the purified antibodies was about 20-fold lower than that of the immune serum, as estimated by Western blot.

The 18-residue peptide corresponding to the C-terminus of CDC28 and the affinity-purified antibody against the peptide were kind gifts from Dr. S. Reed (Mendenhall et al., 1987). Where appropriate, the peptide at 1 μ g/ml was preincubated with the antibodies for 30 minutes on ice.

Anti-DmE2 antibody was obtained from goat anti-RNA polymerase II serum (Weeks et al., 1982) by affinity purification using a protein that fused exon 2 of the Drosophila RpII215 gene (Jokerst et al., 1989) to β -galactosidase. This construct was made by inserting the exon 2-containing 2.5 kb EcoRI fragment of RpII215 into the EcoRI site of pUR288 (Rüther and Müller-Hill, 1983; construction by E. Wong, Cornell University). The fusion protein was induced by IPTG, and the insoluble fractions after lysis were solubilized using 8 M urea followed by dialysis as described (Rio et al., 1986). The protein was immobilized on Reacti-gel according to the manufacturer's protocol (Pierce). Affinity purification was performed as described (Robbins et al., 1984).

Anti-CTD antibody (anti-CTD) was affinitypurified from serum of a rabbit injected with gel-purified RNA polymerase II largest subunit (Weeks et al., 1982) using immobilized β -galyeast CTD fusion protein (Y-FP of Lee and Greenleaf, 1989) as for anti-DmE2 antibody. Antiphosphorylated CTD antiserum (anti-PCTD) was prepared by injection into a rabbit of yeast CTD fusion protein phosphorylated by CTD kinase in vitro. Affinity purification of IgG from the resulting immune serum was then performed as before, though using a column carrying phosphorylated CTD fusion protein.

Western blot analysis was carried out as described (Weeks et al., 1982; modified as Kelly et al., 1986). Bound antibody was detected by either [¹²⁵I]protein A, or alkaline phosphataseconjugated secondary antibody followed by reaction with Nitroblue tetrazolium (NBT, 100 μ g/ml) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP, 50 μ g/ml) in 50 mM Tris-HCl pH 9.6, 50 mM MgCl₂ buffer. In some cases the chemiluminescent substrate AMPPD for alkaline phosphatase was used to detect bound antibody following supplied protocols (Western Light, Bios Inc.).

Screening of yeast genomic DNA library

A λ gt11 library of yeast genomic DNA (from Dr. A. Sugino, NIEHS) was screened using a mixture of the affinity-purified antibodies against all three subunits at 1:10 dilution essentially as described (Hyunh et al., 1984). As secondary antibody, alkaline phosphatase conjugated goat anti-rabbit IgG antibody (Bio-Rad, 1:2000), was used, and bound antibody was visualized by reaction with NBT and BCIP as described above. Purified recombinant phages were lysogenized into E. coli Y1089 strain using the protocols described by Huynh et al. (1984). From the lysogens, fusion proteins were produced by induction with 5 mM IPTG for 2 hours at 37°C. Affinity purification of antibodies against the fusion proteins from these lysogens using nitrocellulose membrane was carried out as described above. Phage DNAs were purified by standard protocols (Maniatis et al., 1989).

One purified phage (λ YJ31) from the screening was determined to contain the gene for the α subunit of CTD kinase by the following criteria: (1) the fusion protein produced by this phage reacted strongly with α subunit-specific affinity-purified antibody, (2) IgG from the antikinase serum affinity-purified using the λ YJ31 fusion protein in turn strongly reacted with the α subunit of the enzyme, and (3) this reaction was proportional to the amount of kinase activity present in fractions from different stages of the kinase purification.

The 3.8 kb EcoRI insert DNA from this phage DNA was subcloned into pBluescript SK-(Stratagene) to give pBJ31 (Fig. 2).

A 0.23 kb HindIII/AccI fragment from pBJ31 was tagged with Digoxigenin-dUTP by randomprimed DNA labeling using the Genius system (Boehringer/Mannheim) following the protocols of the manufacturer. The λ ZAP (Short et al., 1988) library of yeast genomic DNA (from Dr. A. Sugino, NEIHS) was screened using the labeled DNA as probe. The hybridization and washing conditions were as described in the protocols (Genius), except that the incubation temperature was 58°C. Hybridized probe DNAs were reacted with alkaline phosphatase-conjugated anti-Digoxigenin antibody, and bound antibody was visualized by reaction with NBT and BCIP in 50 mM Tris-HCl pH9.6, 50 mM MgCl₂, 100 mM NaCl buffer.

Phagemids (recombinant plasmids in pBluescript SK–) were obtained from purified recombinant λ ZAP phage by an in vivo excision method using the manufacturer's protocols (Stratagene; and also Short et al., 1988), and restriction enzyme mapped.

DNA sequence analysis

For nucleotide sequencing, a series of nested deletions was constructed from plasmids pZJ15 and pZJ17 DNAs (Fig. 2) using the ExoIII-Mung Bean Nuclease Kit from Stratagene. From the strains harboring the pBluescript SK – plasmids containing the resulting deleted *CTK1* genes, single strand DNA was prepared using VCS-M13 helper phage essentially according to the manufacturer's protocols (Stratagene). Sequencing was performed manually by the dideoxynucleotide termination method (Sanger et al., 1977) and by the Dupont Genesis 2000 Automatic DNA Sequencer (Prober et al., 1987) using the 16 oligonucleotide M13 reverse primer (5'AACAGCTATGACCATG 3').

Most computer analyses of DNA and amino acid sequences were performed on a Micro VAXII using the Genetics Computer Group programs (UWGCG, University of Wisconsin). Some analyses were done using the Bionet resource and the McGene Plus II programs. For searching for homologous sequences, both the EMBL and NBRF data bases were used.

DNA isolation and Southern blot

Genomic DNA was prepared from yeast grown in YPD ($A_{600} = 1.0 - 2.0$) following the protocols of Holm et al. (1986). Probe DNA was labeled with Digoxigenin-dUTP as above. Southern blotting was performed as described (Maniatis et al., 1989). Transfer of DNA from gel to Gene Screen nylon membrane (NEN Research Products) was performed using a Vacublot (ABN) by following the manufacturer's procedures. Hybridized probe DNA was reacted with alkaline phosphatase-conjugated anti-Digoxygenin antibody and visualized by reaction with NBT and BCIP as described above.

The yeast chromosomes were prepared and

separated by pulsed field gel electrophoresis and blotted onto Nytran membrane as described (Rose et al., 1990). This membrane was hybridized with same CTK1 DNA probe described in the legend of Figure 6.

Plasmids and gene disruption

Gene disruption experiments were performed by a one-step gene replacement method (Rothstein, 1983). A mutant CTK1 gene, $ctk1\Delta E$:: URA3, was constructed by substituting the CTK1 internal EcoRI fragment of 0.64 kb size with a 1.2 kb URA3 fragment. The URA3 EcoRI fragment was isolated from plasmid pGB310 (constructed by Dr. Craig Giroux, Wayne State University, and obtained from Dr. A. Sugino, NIEHS), in which the URA3 gene was subcloned into the EcoRI site of the β -galactosidase gene with the polylinker, EcoRI-BamHI-SacI-SmaI-HindIII, on both sides of the URA3 gene. A 2.86 kb BglII-HindIII fragment of CTK1 was isolated from plasmid pZI17 (Fig. 2) and subcloned into the BamHI and HindIII sites of the vector pSK-, so that only the two internal EcoRI sites were left. The resulting plasmid pDZ17 was digested with EcoRI and the DNA was isolated with the 0.64 kb internal EcoRI fragment deleted. This DNA was ligated with 1.2 kb EcoRI fragment of URA3, and a plasmid containing the mutant gene, pSZ17, was obtained.

The PSZ17 was digested with ClaI (nucleotides – 295 in Figure 3 and one in the polycloning site in the vector), and the 2.37 kb DNA containing the $ctk1\Delta E$::URA3 construct was isolated and used to transform homozygous ura3 diploid strains DBY1091 and SGY65. Stable Ura⁺ transformants were selected on plates of synthetic minimal media lacking uracil, and the heterozygosity of the gene disruption of the CTK1 ($CTK1/ctk1\Delta E$::URA3) was confirmed by Southern blot. These cells were sporulated, and the asci were dissected (Sherman et al., 1986) and incubated at 30°C on a YPD plate.

Plasmid pJYC1511 was constructed by subcloning a 3.2 kb BglII-SalI *CTK1* DNA from pZJ15 (Fig. 3) into BamHI-SalI sites in plasmid pRS313 (Sikorski and Hieter, 1989). Domain I-deleted *CTK1* gene, pZJ15dl, was constructed from pZJ15 by deletion of amino acid Tyr³ to Ser¹⁸¹ in CTK1 (Fig. 3) by oligonucleotide-directed mutagenesis (Kunkel, 1985) using the oligonucleotide GTAACAATGTCCGTTTACCTAAGG. Note that this deletion contains all of domain I and 17 amino acids in domain II preceding consensus sequences of protein kinase catalytic subunits. The resulting 2.75 kb BglII-SalI fragment from this plasmid was subcloned into pRS313 BamHI-SalI sites, yielding pJYC1512. These plasmids were transformed into haploid *ctk1 his3* strains obtained from tetrad analysis of SGY65 *ctk1/ CTK1* heterozygotes.

Yeast manipulations

Transformation of yeast was done using the LiCl/PEG 4000 method (Ito et al., 1983). Sporulation, spore dissection, and tetrad analysis were performed as described (Sherman et al., 1986). Diploid strains were constructed by mating appropriate haploids and selecting for prototrophy.

To test viability of ctkI in cells containing only shortened versions of the CTD, a ctkI strain, SJY11 (α $ctk1\Delta E$:: URA3 his3 leu2 trp1), obtained from tetrad analysis of transformed SGY65, was crossed with CY199 (Ura⁻ Leu⁺ His⁺ CTD Δ 10⁵/₇; see above), and diploids were selected by prototrophy. These diploids were sporulated and tetrads analyzed. Growth of spore colonies showing Ura⁺ Leu⁺ His⁺ phenotype, which are *RPBIA* :: *HIS3* pRY2203: *LEU2* (CTD Δ 10) ctk1 ΔE :: *URA3*, was studied.

Assay of subunit IIo

Yeast cells were grown until $A_{600} = 1.0 - 2.0$ in YPD broth, and extracts were prepared by one of two methods. Method 1. Cells from 50 ml culture were centrifuged, washed with ice cold H₂O, and resuspended in 1 ml ice cold buffer (25 mM Tris-HCl, pH7.8, 25 mM KCl, 1 mM EDTA, 1 mM DTT, 1 mM PMSF, 20 mM NaF, 0.5 mM NaVO₄). Cells were disrupted using a Mini-bead beater (Biospec Products) in 1.5 ml screw cap microfuge tubes containing 1 ml washed, cold glass beads (0.5 mm dia.), 3 times for 1 minute with 3-minute intervals on ice for cooling. The supernatant was removed, centrifuged for 5 minutes at 4°C, and used for immunoprecipitations (or Western blotting). Method 2. Cells from 5 ml culture were centrifuged, resuspended in 200 µl ethanol, and immediately placed on dry ice (samples could be stored at -80°C for later use). Cells were disrupted by vortexing with glass beads (3 times for 1 minute with 1-minute intervals on dry ice). The resulting material was separated from the beads and collected by centrifugation through a small pellet was dried, resuspended in 100 μ l SDS sample buffer, and heated. Samples to be compared were run on SDS mini-gels which were stained with Coomassie Blue to estimate relative protein concentrations. We have found that this second method of extract preparation yields Western blot results virtually identical to the first method, except that it is more reproducible and more convenient; it was used for Figure 8A-C.

Immunoprecipitation of RNA polymerase II was performed by incubating 100 μ l of extract (Method 1) with anti-DmE2 antibody followed by protein A-Sepharose, similarly to Kolodziej et al. (1990). Precipitated polymerase was resuspended in 100 μ l kinase reaction buffer (Lee and Greenleaf, 1989), and 10 μ l aliquots were treated with CTD kinase (20 units) or alkaline phosphatase (0.5 unit, Boeringer/Mannheim) for 30 minutes at room temperature or 37°C, respectively. Phosphorylation of purified yeast RNA polymerase II (from Dr. J. Jaehning, Indiana University) by CTD kinase was done as described previously (Lee and Greenleaf, 1989).

Localization of CTK1/ β -gal fusion proteins by indirect immunofluorescence

CTK1-LacZ fusions were constructed by subcloning CTK1 gene fragments into the multicopy β-galactosidase fusion vector YEp366 (Myers et al., 1986). Plasmids pCTK1(118)-LacZ and pCTK1(194)-LacZ were constructed by ligation of 1.35 kb BglII-EcoRI(Klenow) and 1.58 kb BglII-NdeI(Klenow) CTK1 gene fragments into BamHI-SalI(Klenow) site of the vector, respectively. Plasmids pCTK1(463)-LacZ and pCTK1(463, Δ 3–181) were constructed by ligation of the wild type 2.4 kb BglII-HindIII fragment or the 1.89 kb BglII-HindIII domain Ideleted CTK1 fragment (from pZJ15dl) into the BamHI-HindIII site of the vector, respectively. These subclones were transformed into yeast SJY65.

Immunostaining of transformed cells was done as described (Rose et al., 1990) using affinity purified rabbit anti-β-galactosidase antibody (Miles-Yeda, Ltd., 1:500 dilution) and rhodamine-conjugated goat anti-rabbit IgG (Boeringer/Mannheim, 1:1000 dilution). Cells were also stained with DAPI (4',6-diamidino-2-phenylindole, Sigma) and were observed and photographed using Leitz microscope Laborlux S.

Figure 1. Immunoblots of CTD kinase. Mono S purified CTD kinase was run in a 12% polyacrylamide SDS gel and analyzed by Western blotting as described in Materials and Methods (2 μ l [37 ng protein] per lane; see Lee and Greenleaf, 1989). [¹²⁵I]Protein A was used to reveal the bound antibody. **A.** Lanes were reacted with preimmune serum (lane 1) or immune serum (lane 2) at 1:100 dilution. **B.** Each lane was reacted with antibodies affinity purified against a single subunit of CTD kinase (1:20 dilution). Lane 1, anti- α subunit (58 kDa); lane 2, anti- β subunit (38 kDa); lane 3, anti- γ subunit (32 kDa). The positions of the three subunits of the CTD kinase are denoted at left.

Results

Isolation and sequencing of the gene encoding the largest subunit of yeast CTD kinase

From an antiserum that reacted with all three subunits of the CTD kinase (Fig. 1A), we affinity purified antibodies directed specifically against each subunit (Fig. 1B). The unique specificities of the anti- α and - γ affinity purified antibodies strongly suggest that the CTD kinase subunits are not related in primary structure, presumably because they are products of different genes. The β subunit-specific antibodies, which were recovered in lower yields probably because of poor binding of that subunit to the nitrocellulose membrane (unpublished), also showed unique specificity upon longer exposure. The antibodies thus represent potentially useful reagents for attempting to clone genes for each subunit of the kinase.

We screened a λ gtl1 expression library of yeast genomic DNA with the affinity purified antibodies and succeeded in isolating a phage containing part of the gene for the large subunit (see Materials and Methods). Subsequently we used a fragment from this phage as a DNA hybridization probe to isolate clones spanning the whole gene, which we call *CTK1* (CTK1 for the protein). The restriction map of the *CTK1* region is shown in Figure 2.

-630	-600	-570	-540	-510	-490
GCAGCAAAGACGGTTAAGT	CCTATCTGGAATCATCCAAAGATTTACGAC -450	AACTAGATGCCAACTCTTCGACAACTGCG -420	CTGGATGCTCTAAATAAAGAATGAAAAGAATGC -390	GAGAGAAACCCTATTAAACTATTTT7 -360	TIGTCTAGGATAATAATAATAATAG -330
Clai CGCTAATCTAAAA <u>ATCGAT</u> C -300	Заасталабаладаататасятасятттат 0 –270	асасаатааатодатттсатаадаадтос -24	ТТААТАТОСТСАТССТТСТССАТАСТССААААТТ 10 –210	AGTANGTANTTANCTTCCTTTINGC	CATTATICTTATITGCCTTAAA 180
ANGETCAGOSTGAAGCTCT/ -150	ATTTTTTOSTTTTTTTTTTCACTGATGGA -120	Асадалаласстстасаталталсуталс - 90	TTTACATATIGATIGCAATGAGATGTTAAAAA -60	ATGGACGGTTCAGACAGTAAAATAC# 30	ATTTAGAAAAAAAAGAGAAQGTC
TIATCAGTGIATTIATICK	CTGTGCATATTAGCTTTTTTTGGACTTTTTT	IGTICCATIAGTACTITIAAAAAACCIAI	TTGIAAATAAAACTAATICTAGCACTATICTT	GCACTAGAATAACACAGGGACCATAC	CRECATAAATTATTTGGTAACA
1 ATG TOO TAO ANT ANT	GOC ANT ACT TAT TCA ANG AGT TA	т абс аба алт алт алб аба соо	TIG TIC GGA ANG AGG TOG CCA ANT	OCT CAS TOC CTA GCG AGA CO	CA COG CCA CCA ANG AGA 120
i Met Ser Tyr Asn Asn	GIY ASH INT TYT Ser Lys Ser Ty	r ser Arg Ash Ash Lys Arg Pro	Led Fre Gly Lys Arg Ser Fro Ash	Pro Gin Ser Leu Ala Arg Pr	ro Pro Pro Pro Lys Arg 40
ATA CGG ACT GAT AGT Ile Arg Thr Asp Ser	CGT TAC CAG TCG ANT ATG GAC AN Gly Tyr Gln Ser Asn Met Asp As	T ATA TCT TCT CAT AGG GTA AAT n Ile Ser Ser His Arg Val Asm	TCA AAT GAC CAA CCA GGC CAC ACG Ser Asn Asp Gln Pro Gly Bis Thr	ANA AGT CGT GGT AAC AAT AA Lys Ser Arg Gly Asn Asn As	AT TTA TCT CGC TAT AAC 240 sn Leu Ser Arg Tyr Asn 80
GAT ACA TCC TIT CAA Asp Thr Ser Phe Gln	ACA AGT TCC AGA TAT CAA GGT TC Thr Ser Ser Arg Tyr Gln Gly Se	A AGA TAC AAC AAT AAT AAT ACG r Arg Tyr Asn Asn Asn Asn Thr	TOG TAT GAA AAT AGG COT AAA AGC Ser Tyr Glu Asn Arg Pro Lys Ser	ATA AAA AGG GAT GAA ACA AA Ile Lys Arg Asp Glu Thr Ly	EcoRI NG GCT <u>GAA THC</u> CTG TCT 360 ys Ala Glu Phe Leu Ser 120
CAT TTG CCA AAG GOG His Leu Pro Lys Gly	COC ANA TCT GTT GAG ANA TCA AG Pro Lys Ser Val Glu Lys Ser Ar	A TAT AAT AAT TCA TCC AAT ACT g Tyr Asn Asn Ser Ser Asn Thr	AGT AAT GAT ATA AAA AAT GGC TAT Ser Asn Asp Ile Lys Asn Gly Tyr	CAT GCT TCA AAA TAC TAT AA Bis Ala Ser Lys Tyr Tyr As	NC CAC AAA GGC CAG GAA 480 sn His Lys Gly Gln Glu 160
GGG CGG TCT GTC ATA Gly Arg Ser Val Ile	GCT ANG ANA GTT CCA GTT TOG GT Ala Lys Lys Val Pro Val Ser Va	T CTA ACG CAG CAA AGG AGC ACG 1 Leu Thr Gln Gln Arg Ser Thr	TCA GTT TAC CTA AGG ATA ATG CAA Ser Val Tyr Leu Arg Ile Met Gln	Ndel GTC GGA GAA GGA A <u>CA TAT G</u> G Val Gly Glu Gly Thr Tyr Gl	ST AAA STT TAC AAG GCA 600 ly Lys Val Tyr Lys Ala 200
AAA AAC ACG AAT ACA Lys Asn Thr Asn Thr	GAG AAG TTA GTA GGG CTG AAA AA Glu Lys Lou Val Ala Lou Lys Ly	A TTG AGA TTA CAA GGA GAG AGG 8 Leu Arg Leu Gin Giy Giu Arg	GAA GGC TTT CCC ATA ACC TCT ATA Glu Gly Phe Pro Ile Thr Ser Ile	CGA GAG ATT ANA CTA CTA CA Arg Glu Ile Lys Leu Leu Gl	AA AGT TIT GAT CAT CCA 720 In Ser Phe Asp His Pro 240
AAT GTC TCT ACT ATA Asn Val Ser Thr Ile	AAA GAA ATA ATG GTC GAA TCT CA Lys Glu Ile Met Val Glu Ser Gl	A AAA ACT GTA TAT ATG ATA TTT n Lys Thr Val Tyr Met Ile Phe	GAA TAT GCT GAC AAC GAC TTA AGT Glu Tyr Ala Asp Asn Asp Leu Ser	GGA TTA CTA TTA AAT AAG GA Gly Leu Leu Leu Asn Lys Gl	NA GTC CAA ATT TCT CAC 840 lu Val Gln Ile Ser His 200
TCA CAA TGC AAA CAT Ser Gin Cys Lys His	CTC TTC AAA CAA TTG CTA TTA GG Leu Phe Lys Gln Leu Leu Gl	A ATG GAA TAT TTA CAT GAT AAT y Met Glu Tyr Leu His Asp Asn	ANG ATT TTA CAC CGT GAT GTT AAA Lys lle Leu His Arg Asp Val Lys	GGC TCA AAC ATC TTA ATC GA Gly Ser Asn Ile Leu Ile As	NT AAC CAG GGG AAT CTA 960 mp Asn Gin Giy Asn Leu 320
AAA ATA ACA GAT TIT Lys lie Thr Asp Phe	EcoRI GGA CTA GOG AGG AAA AT <u>G AAT TC</u> Gly Leu Ala Arg Lys Met Asn Se	G OGA GCT GAT TAE ACT AAC OST r Arg Ala Asp Tyr Thr Asn Arg	GTC ATT AGG TTG TGG TAC AGA CCA Val 11e Thr Leu Trp Tyr Arg Pro	CCA GAA CTA TTG TTG GGA AC Pro Glu Leu Leu Leu Gly Th	TT ACA AAT TAT GGA ACA 1080 hr Thr Asn Tyr Gly Thr 360
GAA GTT GAC ATG TGG Glu Val Asp Met Trp	GGT TGT GGC TGC CTC CTG GTG GA Gly Cys Gly Cys Leu Leu Val Gl	A TTA TTC AAT AAA ACT GCA ATT u Leu Phe Asn Lys Thr Ala Ile	TTC CAG GGC TCT AAT GAA TTA GAG Phe Gln Gly Ser Asn Glu Leu Glu	CAA ATA GAA TCA ATT TTC AA Gln Ile Glu Ser Ile Phe Ly	AG ATT ATG GGA ACT CCT 1200 ys Ile Met Gly Thr Pro 400
ACA ATA AAT AGC TGG Thr Ile Asn Ser Trp	CCA ACG CTT TAC GAT ATG CCG TG Pro Thr Leu Tyr Asp Met Pro Tr	G TTT TTT ATG ATT ATG CCA CAG p Phe Phe Met Ile Met Pro Gin	GAN ACT ACC ANG TAT GTC ANC ANT Gln Thr Thr Lys Tyr Val Asn Asn	TTT TCT GAG AAA TTT AAA AG Phe Ser Glu Lys Phe Lys Se	SC GTT TTA CCA TCT TCA 1320 NY Val Leu Pro Ser Ser 440
AAA TGT CTG CAA TTG Lys Cys Leu Gln Leu	GOG ATT AAT TIG TIA TGT TAT GA Ala Ile Asn leu leu Cys Tyr As	T CAG ACG AAA AGG TTT AGT GCA p Gin Thr Lys Arg Phe Ser Ale	BindIII ACC G <u>AA GCT T</u> TA CAA AGC GAC TAT Thr Glu Ala Leu Gln Ser Asp Tyr	TTC AAG GAA GAA CCA AAG CC Phe Lys Glu Glu Pro Lys Pr	CT GAA CCT TTA GTT CTT 1440 ro Glu Pro Leu Val Leu 480
GAT GGA TTG GTA AGT Asp Gly Leu Val Ser	TGC CAC GAA TAT GAA GTC AAA TT Cys His Glu Tyr Glu Val Lys Le	G GCA AGA AAA CAA AAG COT CCT u Ala Arg Lys Gln Lys Arg Pro	AAC ATA CTA TOC ACC AAC ACA AAC Asn lle Leu Ser Thr Asn Thr Asn	ANT ANG GGT ANT GGT ANT AG Asn Lys Gly Asn Gly Asn Se	ST AAT AAT AAT AAT AAT 1560 er Asn Asn Asn Asn Asn 520
ANT ANT ANT GAC GAT	GAT GAT AAA TAA GGATATATAGCC	Ассі . Алтеллатал <u>стиси:</u> Асалалатаса	TTANTAACTTATTTATTACCCGATACCCGTAAA	TATGATACGAACATCTAATTTCATGT	IGAAGCGGCCTAGTGAATAGAA 170
Asn Asn Asn Asp Asp 1710	λαφ λαφ Lys * 1740	1770	1800	1830	528 1860
GGTTIGCCIATITICACION	STICACTATACGTAACTTGGTTGTCTTTTTA 1890	IGCANGCTGTTTGTCCATCGTACCAACAC	CATCTCATTTCACATCTTATAAATTAGCCTGGC 1950 19	CACTAACTGTCTTACCTCTTATGCCT 80	TATTGCGTTTTTCCANSCATC
TOCTOCATAT ANTANA TOTI	ACTACCTATCAACCAACTTCCATGTACCTT	ACCANTEGOCTACCANGTETECOTTAC	ATTGETTCGACATGATATCTAGTTGTTTTGTCG	TTTCTGTAAATA	

Figure 3. Sequence of *CTK1* gene. The nucleotide and amino acid sequences of the *CTK1* gene and its open reading frame are shown. The 5' region upstream of start ATG codon is expressed by - numbers. The total sequenced region covers from -654 to +1991. Every 30 nucleotides and every 10 amino acid residues are indicated by dots. Several restriction enzyme sites are also noted on the sequence. The polyadenylation signal is underlined.

Sequencing 2645 nucleotides of *CTK1* DNA (Fig. 3) revealed one long open reading frame of 1582 nucleotides which predicts a 528 amino acid protein with a molecular weight of 60.4 kDa, in good agreement with the subunit size estimate of 58 kDa derived from SDS polyacrylamide gel electrophoresis. The sequence surrounding the predicted N-terminus of CTK1 is consistent with the yeast translation start consensus sequence (Cigan and Donahue, 1987, Hamilton et al., 1987). At the DNA level, we noticed several T and A clusters in the region upstream of the open reading frame, a characteristic of constitutively-expressed yeast genes (Struhl, 1985); whether the *CTK1* gene is expressed constitutively or inducibly has yet to be determined.

We analyzed codon usage in the CTK1 open reading frame, calculating a codon bias value (Bennetzen and Hall, 1982) of -0.2, which indicates that codon usage in this gene is nonrandomly biased toward nonpreferred triplets and suggests that the gene product should exist at a very low level. This is in agreement with the purification data described earlier (Lee and Greenleaf, 1989).

To determine on which chromosome *CTK1* is located, we hybridized a labeled *CTK1* DNA probe to a blot of separated yeast chromosomes; it hybridized to chromosome XI.

Homologies to protein kinases

We searched the NBRF and EMBL data banks using the total amino acid sequence of CTK1 and found that all of the proteins with significant homology to CTK1 are protein kinases or catalytic subunits of protein kinases. The relevant portion of CTK1 possesses all of the nine invariant amino acids found in catalytic subunits of protein kinases and shows strong homology to most of the other conserved sequences (Hanks et al., 1988). These data strongly suggest that the gene product of *CTK1*, the α subunit of the CTD kinase, is a catalytic subunit.

The proteins most homologous to CTK1 are CDC28 of Saccharomyces cerevisiae and its homologues, including human CDC2 and cdc2 of the yeast Schizosaccharomyces pombe. Amino acid sequences of CTK1, CDC28 and cdc2 are compared in Figure 4. The CTK1 protein kinasehomologous region comprises an internal segment of the protein, from amino acid 183 to 471, which displays homologies spanning virtually the entire length of CDC28/cdc2. While the overall amino acid identity between CDC28 and the homologous region of CTK1 is 40.3%, some stretches are nearly identical (e.g., eleven of twelve amino acids from Val¹⁹⁰ to Ala²⁰¹ [CTK1 numbering]).

The CDC28/cdc2 kinases are 60% identical overall and share several highly conserved regions, such as an invariant stretch of 16 amino acids between Glu⁴⁹ and Glu⁶⁴, EGVPSTAIR-EISLLKE (CDC28 numbering; Lee and Nurse, 1988). This "PSTAIR" region is thought to play a common critical role in the CDC28/cdc2 enzymes, such as influencing substrate recognition. Significantly, the CTK1 sequence in this region differs in 6 of 16 amino acids from the CDC28/ cdc2 proteins. In addition, of four perfectly conserved tryptophan residues in all CDC28/cdc2 kinases (Krek and Nigg, 1989), only three are present in CTK1. These differences hint that the substrate specificity of CTK1 should be different from CDC28/cdc2, which is consistent with results described below.

Many protein kinases have been found to be phosphorylated and/or autophosphorylated, and in the CDC28/cdc2 kinases phosphorylation and dephosphorylation are functionally important (Simanis and Nurse, 1986; Draetta et al., 1988; Dunphy and Newport, 1989; Morla et al., 1989; Pondavin et al., 1990; Felix et al., 1990; Jessus et al., 1990). Consensus sequences sur-

ede2	1	MENYQKVEKIGEGTYGVVYKABHKLSGRIVAMKKIRLEDESEGVPSTAIREISLLKEV
CDC28	1	MSGELANYKRLEKVGEGTYGVVYKALDLRPGQGQRVVALKKIRLESEDEGVPSTAIREISLLKE
CTK 1	176	QQRSTSV <mark>YLRIMQ</mark> VGEGTYG <mark>KVYKA</mark> KNTNTEKL <mark>VALKKLRLQGEREGFPITSIREIKLLQ</mark> SF
cdc2	59	NDENNRSNCVRLLDILHAES-KLYLVFEFLDMDLKKYMDRISETGATSLDPRLVQKFTYQLVNGVN
CDC28	66	KDDNIVRLYDIVHSDAHKLYLVFEFLDLDLKRYMEGIPKDDPLGADIVKKFMMQLCKGIA
CTK 1	238	DHPNVSTIKEIMVESQKTVYMIFEYADNDLSGLLLNKEVQISHSQCKHLFKQLLLGME
ede2	124	FCHS <mark>RRII</mark> HRDLKPQNLLIDKEGNLKLADFGLARSFGVPLRNYTHEIVTLWYRAPEVLLG <mark>SRH</mark> YST
CDC28	126	YCHSHRILHRDLKPQNLLINKDGNLKLGDFGLARAFGVPLRAYTHEIVTLWYRAPEVLLGGKQVST
CTK 1	296	Y <mark>LHDNK</mark> ILHRD <mark>VKGSNI</mark> LIDNQGNLK <mark>IT</mark> DFGLAR <mark>KMNSR-AD</mark> YT <mark>NRVI</mark> TLWYR <mark>PPEL</mark> LLGTTN <mark>YG</mark> T
ede2	190	GUDIWSVGCIFREMIR <mark>RSPLFP</mark> GDSEIDEIFKIFQULGTPNEEVWPGUTLLQDYKSTFPRWKRM
CDC28	192	GUDTWSIGCIFREMCNRKPIFSGDSEIDQIFKIFRULGTPNERIWPDIVYLPDFKPSFPQWRRK
CTK 1	361	EVDMWGCGCLLVELFNKTRIFQGSNELEQIESIFKIMGTPTINSWPTLYDMPWFFMIMPOQTTKYVN
ede2	254	DLHK <mark>VVP</mark> NGEEDAIELLSAMLVYDPAHRISAKRALQQNYLRDFH 297
CDC28	256	DLSQVVPSLDPRGIDLLDKLLAYDPINRISARRAATHPYFQES 298
CTK 1	428	NFSEKFKSVLPSSKCLQLAINLLCYDQTKR <mark>7</mark> SATEALO <mark>SDYFK</mark> EEP 473

Figure 4. Sequence homologies among cdc2 of S. pombe, CDC28 of S. cerevisiae, and CTK1. Identical sequences are shown as white letters in the dark background; amino acid numbers are denoted at left.

rounding a potential phosphorylation site in CDC28/cdc2 proteins (Nurse, 1985; Russel and Nurse, 1987) are also found in CTK1 (residues 304 to 373; Fig. 4). Providing possible significance to the presence of these sequences in CTK1 is our observation that the largest subunit of CTD kinase is autophosphorylated in vitro (as is the smallest subunit; J. M. L., unpublished data).

Analysis of CTK1 structure

Hydrophobicity values (Kyte and Doolittle, 1982) for CTK1, displayed in Figure 5, reveal a striking structural feature of this protein. The Nterminal and C-terminal regions of the protein comprise completely hydrophilic domains, while the central section is composed of a more common combination of alternating hydrophilic and hydrophobic segments. The long hydrophilic segment at the N-terminus ("domain I", residues 1-165) is predicted (Garnier et al., 1978) to contain only one segment of α -helix, the remainder most likely being random coils or turns (not shown). Thus we expect this region to have an extended, solvent-exposed structure, reminiscent of the CTD itself. The shorter hydrophilic segment at the C-terminus ("domain III", residues 490-528) probably manifests a similar extended structure, part of which may be α -helical. On the other hand, the middle region ("domain II", residues 166-489) is predicted to contain all types of secondary structures, suggesting that this region is probably globular. Domain II contains the sequences homologous to CDC28/cdc2 which are conserved in catalytic subunits of the protein kinases. These facts suggest that overall the CTK1 protein probably contains a globular CDC28-like central catalytic domain with solvent-exposed N-terminal and C-terminal extensions.

Gene disruptions and partial deletions

Southern blots of genomic DNA digested with restriction enzymes which cut only once within the CTK1 coding region clearly indicated that the gene was single copy (data not shown). We asked whether the CTK1 gene was essential or not by a one-step gene disruption experiment (Rothstein, 1983), followed by tetrad analysis. The 0.64 kb internal EcoRI fragment of the wild type CTK1 gene (Fig. 6) was excised and replaced by a 1.2 kb URA3 DNA fragment to create $ctk1\Delta E$:: URA3 (Materials and Methods); deleting the EcoRI fragment removes a region containing putative ATP binding and essential catalytic sequences, and the mutant gene should therefore be completely devoid of kinase activity. Diploid transformants of DBY1091 carrying one copy of the disrupted gene were isolated (Fig. 6), one of these was sporulated, and tetrads were dissected. All four spores germinated and grew (data not shown).

Among four colonies from each tetrad, two were large (Ura⁻) and two were small (Ura⁺), suggesting that disrupting the CTK1 gene leads to a reduced growth rate. That the CTK1 gene was disrupted in the Ura⁺ cells was confirmed by Southern blot analysis (Fig. 6). The data in Figure 6 also confirmed that the CTK1 gene is a single copy gene, because no wild type gene was detected in the mutant cells. These results demonstrate that the CTK1 gene is not absolutely essential in vivo at normal growth temperatures, but indicate that disruption of the gene is detrimental to the cells.

Figure 5. Structural features of CTK1 protein. Hydropathy values (Kyte and Doolittle, 1982) were calculated and plotted using MacGene II Plus computer program. The three tentatively assigned domains, as described in text, are indicated at the bottom. For hydropathy the + values (above the horizontal lines) indicate hydrophobicity, and the – values (below the line) the hydrophilicity. The numbers underneath the box indicate the amino acid number.

Figure 6. Southern blot analysis of gene disruptions. Total genomic DNAs were digested with restriction enzymes AccI and BglII and analyzed by Southern blotting as described in Materials and Methods (1% agarose gel). A. Schematic diagram of wild type and mutant CTK1 genes. The top line of each is a restriction map. Below that is shown the probe DNA fragments used for the Southern blotting. At the bottom are the expected sizes of DNA bands which will hybridize with the labeled DNA probes. B: BglII; C: ClaI; R: EcoRI; H: HindIII; A: Accl. B. Southern blot of genomic DNA from wild type diploid strain DBY1091 (lane 1), from two independent transformants of DBY 1091 (lanes 2 and 3), and from four haploid mutant ctk1 strains (lanes 4 to 7) derived meiotically from the diploids of lanes 2 and 3. The sizes of hybridized DNA bands are denoted at left. (The sibling wild type CTK1 haploids contained only the 2.6 kb band).

type and mutant cells and found that doubling time of the mutant cells in YPD broth at 30°C was about 2-fold longer than wild type. At lower temperatures the mutant cells became progressively more debilitated relative to wild type, until at a temperature of 12°C they failed to grow at all. To confirm the generality of the slow growth and cold sensitivity phenotype of *ctk1* mutants, we disrupted the gene in another diploid (SGY65) and in several different haploid strains. All transformants with the *CTK1* gene disrupted displayed the same phenotype. Furthermore the slow growth, cold sensitivity phenotype of the *ctk1* mutant strains was rescued by introduction of the wild type *CTK1* gene on a CEN plasmid (pJYC1511), providing additional evidence that this phenotype is caused by disruption of the *CTK1* gene (not shown).

As an initial test of the functional importance of the N-terminal hydrophilic domain I described above, we constructed a plasmid carrying a *CTK1* gene lacking this domain and tested its ability to restore wild type growth properties to *ctk1* strains. This truncated gene (plasmid pJYC1512) failed to rescue the growth defects, indicating that domain I performs a critical function in vivo.

ctk1 mutant cells lack CTD kinase activity

Because sequence analyses strongly suggest that the CTK1 gene product is a catalytic subunit, the mutant ctk1 cells generated in the gene disruption experiments should lack CTD kinase activity if in fact CTK1 encodes the α subunit of the enzyme. To test this prediction directly we checked for CTD kinase activity in extracts of CTK1 and ctk1 sibling strains.

As mentioned previously (Lee and Greenleaf, 1989), two kinds of phosphorylating activity were observed in unfractionated yeast extracts when a CTD-containing fusion protein was used as substrate. One activity, the CTD kinase we purified, causes a marked mobility shift of the substrate in SDS gels. The other activity does not cause the mobility shift (non-shifting kinase). Since these two activities can be cleanly separated by phosphocellulose column chromatography, we applied crude extracts from wild type and ctk1 mutant strains to parallel phosphocellulose columns and assayed the resulting fractions for kinase activities. As seen in Figure 7A, wild type cells contain both activities as expected (with the CTD kinase peaking in fraction 33). In contrast, *ctk1* cells do not contian detectable CTD kinase activity, while they still contain the non-shifting kinase (peaking in fraction 24, Fig. 7B). These results support the conclusion that indeed CTK1 encodes the a subunit of the CTD kinase.

These experiments also indicated that the

Figure 7. Phosphocellulose column profiles of CTD kinase activity in extracts prepared from CTK1 and ctk1 strains. Crude extracts from wild type CTK1 and mutant ctk1 haploid strains (30 ml culture at A_{600} = 1.0) were loaded directly onto two identical columns of 3 ml phosphocellulose (P11) at 0.2 M KCl in buffer H (Lee and Greenleaf, 1989) and eluted with a 15 ml gradient of 0.2-0.8 M KCl in buffer H. Fractions of 0.5 ml were collected and dialyzed against 25 mM KCl in buffer H, then 1 µl of each fraction was assayed for CTD kinase activity under standard conditions with yeast CTD fusion protein as substrate (Lee and Greenleaf, 1989). Reaction products were analyzed by 6% SDS polyacrylamide gel electrophoresis, and an autoradiogram was taken from dried gel. The position of the intact fusion protein is indicated. A. Extract of wild type CTK1 strain. B. Extract of mutant ctk1 strain.

non-shifting kinase was distinct from CTD kinase. Consistent with this, other studies showed that unlike the CTD kinase, the non-shifting kinase was not inhibited by anti-CTD kinase antibody (data not shown). In addition, note that the segment of subunit II_a carried by the fusion protein used here as substrate contains 48 amino acid residues N-terminal to the start of the CTD ("upstream" residues), and that it is approximately 90% proteolyzed (Lee and Greenleaf, 1989). The non-shifting kinase activity preferentially labels the proteolyzed species which probably contain the upstream residues but little if any CTD, whereas the CTD kinase does not label these molecules. We have also prepared a fusion protein substrate lacking these upstream residues and found that it was an extremely poor substrate for the non-shifting kinase, while it remained an excellent substrate for the CTD kinase (unpublished).

Subunit II_o in *ctk1* mutant cells

Subunit form II_o has been characterized best in HeLa cells, where in rapidly prepared extracts it is the exclusive form of the large subunit (Kim and Dahmus, 1986), indicating that in vivo essentially all of the HeLa RNA polymerase II is hyperphosphorylated. However, this situation may not be expected to obtain in other types of cells or in other organisms, since even in other mammalian cultured cell extracts, substantial levels of II_a were detected (Kim and Dahmus, 1986). The in vivo phosphorylation state of yeast large subunit has been studied less thoroughly. Earlier studies detected a phosphorylated form we would now call II_o (Buhler et al., 1976; Bell et al., 1977), and a recent investigation found that ca. 50% of immune-precipitated RNA polymerase II large subunit was highly phosphorylated and migrated with reduced mobility in SDS gels, features that define form II_o (Kolodziej et al., 1990).

To investigate the presence of subunit II_o in both wild type and *ctk1* cells, we prepared extracts rapidly and assayed polymerase II largest subunit status by immunoblotting with a subunit-specific affinity purified antibody (see Materials and Methods). In wild type extracts we detected both subunit II_a and slower migrating species, as shown in lanes 3–6 of Figure 8A. After immune precipitation and treatment with phosphatase, the upper band(s) disappeared while the amount of II_a increased, indicating that the slow migration of the upper band(s) was due to phosphorylation (Fig. 8D, lane 4). As is most noticeable in the immune precipitate (Fig. 8D, lane 3), more than one slower migrating form of the large subunit is sometimes observed in these analyses, and most of the forms migrate slightly faster than the "II₀" generated by CTD kinase in vitro (compare Fig. 8D, lanes 3 and 2), suggesting that they are not maximally phosphorylated. This suggestion was verified by treating the antibody precipitate with CTD kinase before electrophoresis; as shown in lane 5 of Figure 8D, the upper band now migrated at the same position as the in vitro phosphorylated form. From these results we conclude that the upper band(s) in extracts from wild type cells represents a phosphorylated form of subunit II_a with reduced electrophoretic mobility, that is, II₀.

We next checked for the presence of II_o in extracts from ctk1 mutant cells. These extracts also contained slower migrating forms of the largest subunit (Fig. 8A, lanes 7-9), which, upon phosphatase treatment or CTD kinase treatment, behaved similarly to those from wild type cells (not shown). Thus ctk1 cells, which do not contain the characterized CTD kinase, nevertheless contain an activity capable of phosphorylating the CTD. Careful inspection of lanes 7-9 in Figure 8A reveals that the forms of the largest polymerase II subunit in mutant cells are not precisely the same as those in wild type (lanes 3-6). In particular, form "II_a" in the mutant cells migrates slightly slower than in wild type cells; this observation is reproducible, but we do not yet understand the underlying basis for it.

To compare further the forms of the largest RNA polymerase II subunit in wild type and mutant cells, we prepared two new affinitypurified antisera differentially reactive toward the CTD (Materials and Methods). "Anti-CTD" reacts well with unphosphorylated CTD and very poorly with in vitro phosphorylated CTD (compare lanes 1 and 2 of Fig. 8B), while "anti-PCTD" reacts principally with the in vitro phosphorylated CTD (compare lanes 1 and 2 of Fig. 8C). When reacted with parallel immunoblots of the same sets of extracts, the anti-CTD antibody displays different intensity and pattern of reaction with large subunit forms in wild type vs. mutant extracts (Fig. 8B, lanes 3 and 4). Note that Lee and Greenleaf

tects in both extracts are presumably less (or differently) phosphorylated than the in vitro generated II_o, with which it reacts poorly (Fig. 8B, lanes 2). The most noticeable difference was observed using the anti-PCTD antibody, which reveals predominantly a slow-migrating form in wild type extracts but very little of this form in mutant extracts (Fig. 8C, lanes 3 and 4). Taken together, these results provide strong evidence that the in vivo phosphorylation state of pol II largest subunit is altered when cells lack functional CTK1-containing CTD kinase, supporting the idea that this kinase plays a role in CTD phosphorylation in vivo. Similar preliminary analyses of RNA polymerase II largest subunit forms in ctk1 mutants constructed in other strains also consistently reveal differences between the mutant and corresponding wild type (unpublished); however, even among wild type strains the actual II_o/II_a ratio appears to vary, presumably due to effects of different genetic backgrounds.

Other properties of ctk1 mutants

We tested cells lacking CTD kinase for other physiological defects. We found that two haploid *ctk1* strains of opposite mating type were capable of mating and producing viable homozygous diploids; thus the complex pathways involved in mating behavior remain functional in the absence of CTD kinase. In addition, the diploid strains thus produced displayed the same slow growth/cold sensitivity phenotype as the haploid mutant strains.

The availability of homozygous *ctk1* mutants allowed us to test their ability to undergo meiosis and sporulation. We found that several diploids derived from different haploid pairs were all defective in sporulation under all conditions tested. While we have not attempted to determine the specific stage at which the process was blocked, we did not observe cells with multiple nuclei after DAPI staining; this suggests that the process was blocked at an early stage. The block was specific to the *ctk1* defect, since introducing the wild type *CTK1* gene into the diploids restored their ability to sporulate (not shown).

Microscopic examination revealed that the morphology of *ctk1* mutant strains differed from that of wild type. The mutant cell population was very heterogeneous, displaying sizes and shapes ranging from almost wild type to large,

Figure 8. Western blot analysis of subunit II_a/II_o in crude extracts from CTK1 and ctk1 strains using different antibodies. Crude extracts were prepared from different yeast strains and samples containing similar amounts of total protein were analyzed by Western blotting using different largest subunit-specific affinity-purified antibodies (all described in Materials and Methods). Lanes 1 and 2 of each blot contained purified yeast RNA polymerase II (Pol IIA) and the same polymerase II after phosphorylation in vitro by CTD kinase (Pol IIO), respectively. Bound antibody was detected with [125] protein A for A-C, or with alkaline phosphatase conjugated goat anti-rabbit antibody followed by reaction with chemiluminescent substrate AMPPD for **D**. The positions of subunit II_a and II_o are denoted as solid and dotted arrows respectively. A. Blot was reacted with anti-DmE2, directed against determinants outside the CTD (major bands in lanes 1 and 2 represent IIb, the proteolyzed form of IIa). Lane 3: wild type diploid strain (DBY 1091). Lane 4: diploid transformant. Lanes 5 and 6: haploid wild type strains. Lanes 7 and 8: haploid mutant strains. (Strains in lanes 5-8 were siblings from one tetrad derived from the strain of lane 4). Lane 9: a diploid mutant strain constructed by crossing two haploid mutant strains. The low IIo/IIa ratio in this blot (lane 2 vs lane 1) is presumably an artifact (compare blot in D). B. Blot was reacted with anti-CTD. Lanes 3 and 4 contained extracts from wild type and mutant strains, respectively (replicate samples of those used in A, lanes 5 and 7). C. Blot was reacted with anti-PCTD, directed against phosphorylated CTD. The lanes contain samples as in B. D. Crude extract prepared from a wild type strain (lane 5 in A) was immuno-precipitated with anti-DmE2 antibody and the immunoprecipitate analyzed after no treatment (lane 3), treatment with alkaline phosphatase (lane 4), or treatment with yeast CTD kinase (lane 5). (See Materials and Methods.) Blot was reacted with anti-DmE2 antibody.

round cells roughly twice wild type size. Perhaps these morphologies are a consequence of disturbed patterns of transcription resulting from improper CTD phosphorylation.

In yeast and other organisms tested the CTD can be shortened substantially without loss of viability, but about 50% is needed for normal growth (Nonet et al., 1987; Bartolomei et al., 1988; Zehring et al., 1988; Allison et al., 1988). In S. cerevisiae 13 repeats suffice for normal growth rates, fewer than 10 repeats result in lethality, while 10 to 12 repeats yield slow growth rates and cold sensitivity. We tested the possibility that a combination of ctk1 disruption and CTD truncation to 10 repeats would result in either exacerbating or ameliorating the slow growth/cold sensitivity phenotypes of each mutation. To generate the double mutants, we crossed strains possessing a CTD with 10⁵/₇ repeats with ctk1 mutants and analyzed tetrads (Materials and Methods). The resulting double mutant haploids were slow growing and cold sensitive, but we observed no other noticeable changes of phenotypes (unpublished); this may suggest that the partially truncated CTD was being phosphorylated in these doubly mutant strains as was the intact CTD in the *ctk1* mutant strains described above.

Nuclear targeting of CTK1 protein

If CTD kinase functions in the nucleus to phosphorylate RNA polymerase II, we anticipate that it should be a nuclear enzyme. As one approach to test this idea, we prepared several fusion constructs linking different portions of CTK1 to E. coli lacZ, expressed them in yeast, and located the resultant fusion proteins with antibodies to β-galactosidase (see Materials and Methods). As shown in Figure 9B, a fusion protein carrying the 118 N-terminal amino acids of CTK1 (plasmid pCTK1(118)-LacZ) was localized in the nucleus. Other fusion proteins containing longer N-terminal CTK1 segments were also nuclear (not shown). In contrast, a fusion protein containing CTK1 residues 182-463 (pCTK1 $(463,\Delta 3-181)$ ·LacZ) was found in the cytoplasm (Fig. 9D). Clearly a nuclear localization signal resides in the first 118 residues of CTK1. Inspection of the sequence reveals a motif similar to previously described nuclear localization signals (PPKRIRTD beginning at residue 37; e.g., Estruch and Carlson, 1990).

No CDC28 protein in CTD kinase

S. cerevisiae CDC28 (ca. 34 kDa) is a major cellcycle regulatory protein kinase (Reed et al., 1985) whose activity is required for the start of the cell cycle. Functionally and structurally homologous proteins have been found in the fission yeast Schizosaccharomyces pombe (cdc2) and mammals (p34; for review, see Pines and Hunter, 1990). This protein is a component of MPF (maturation promoting factor) isolated from Xenopus (Gautier et al., 1988, Dunphy et al., 1988) and also of M phase-specific histone H1 kinase of starfish (Labbe et al., 1988, Arion et al., 1988). Recently, a CTD kinase was purified from mouse cells which consists of 58 and 34 kDa subunits (Cisek and Corden, 1989). Sequencing the cloned gene encoding the 34 kDa subunit showed it to be a murine homologue of S. cerevisiae CDC28. This observation raised the possibility that the similarly-sized subunit of yeast CTD kinase (γ) might actually be CDC28.

We tested this possibility by immunoblotting with a CDC28-specific antibody, which was raised against a peptide of 18 amino acids corresponding to the C-terminus of CDC28 (see Materials and Methods). Figure 10 shows that the CDC28-specific antibody strongly reacted with a '34 kDa' protein in the crude yeast extract, but

Figure 9. Intracellular localization of CTK1-β-galactosidase fusion proteins. Cells were stained with 4', 6diamidino-2-phenylindole (DAPI) (panels A, C) and rabbit anti-β-galactosidase antibody followed by rhodamine-labeled second antibody (panels B, D). The strain containing plasmid pCTK1(118)-LacZ is shown in panels A and B. The strain containing pCTK1 $(463, \Delta 3-181)$ -LacZ is shown in panels C and D.

not with the CTD kinase (Fig. 10B, lanes 2 and 1). Note that the level of the purified kinase in lane 1 is much higher than in the crude extracts in lane 2. In the control experiments (Fig. 10A) anti-CTD kinase antibody easily detected purified kinase subunits (lane 1), but barely detected kinase subunits (if at all) in the crude extract (lane 2), presumably because of the low abundance of the CTD kinase in yeast (Lee and Greenleaf, 1989). Furthermore, the 18 amino acid peptide blocked the binding of the CDC28 antibody to the CDC28 protein (Fig. 10B, lane 4) but did not block the CTD kinase antibody (Fig. 10A, lanes 3 and 4). These data clearly demonstrate that the CTK1-containing yeast CTD kinase and the cdc2/CDC28-containing mammalian enzyme are distinct.

Discussion

The results reported here indicate that the α subunit of yeast CTD kinase contains an internal domain that is highly homologous to catalytic subunits of other protein kinases and in particular contains the residues which are invariant in those subunits. These data strongly suggest that α , the 58 kDa product of the CTK1 gene, is a catalytic subunit. While a (the CTK1 protein) shows most homology to the CDC28/ cdc2 protein kinases, it differs from them considerably. For example, it is nearly twice as large as canonical CDC28, containing unusual N- and C-terminal domains. In addition, sequence motifs precisely conserved among CDC28/cdc2 kinases are significantly different in CTK1, suggesting distinct functions.

Besides α , purified CTD kinase contains β and y subunits of apparent sizes 38 and 32 kDa respectively, for which the genes have yet to be cloned. In view of the report that a mouse CTD kinase activity contains a 34 kDa subunit which in fact is murine p34^{cdc2} (Cisek and Corden, 1989), we checked the possibility that the small yeast CTD kinase subunit might actually be CDC28, the S. cerevisiae counterpart of p34^{cdc2}; our results establish that it is not. Thus it seems clear that the enzyme we purified using a CTDcontaining fusion protein as substrate is different from the enzyme purified using short synthetic repeat peptides as substrate (Cisek and Corden, 1989). On the other hand, since amino acid sequence analysis reveals that CTK1 and p34^{cdc2/CDC28} belong to the same family of Ser/

A. CTDK Ab B. CDC28 Ab

Figure 10. Immunoblot of CTD kinase with anti-CTD kinase and anti-CDC28 antibodies. Mono-S purified CTD kinase (lanes 1 and 3, 0.1 µl) and crude extract (lanes 2 and 4, 10 µl) were run in a 12% polyacrylamide SDS gel and blotted onto nitrocellulose membrane. A. Blots were reacted with a mixture of all three affinitypurified antibodies against the subunits of CTD kinase (lanes 1 and 2), or with these antibodies preincubated with an 18 amino acid oligopeptide representing the C-terminus of CDC28 (lanes 3 and 4). B. Blots were reacted with affinity purified anti-CDC28 antibody (lanes 1 and 2), or this antibody preincubated with the 18 amino acid oligopeptide (lanes 3 and 4) (see Materials and Methods). Bound antibodies were detected with alkaline phosphatase conjugated goat anti-rabbit IgG followed by reaction with NBT and BCIP. Positions of the CTD kinase subunits are indicated at left.

Thr protein kinase catalytic subunits, we might expect some similarities between the CTK1containing yeast CTD kinase and the cdc2/ CDC28-containing mouse enzyme. In fact, CDC28-containing protein kinases phosphorylate histone H1, pp60^{src} and other substrates at sites with a consensus sequence that can be represented by S/T-P-X-Z, where X is a polar amino acid and Z is generally a basic amino acid (Moreno and Nurse, 1990; see also Shenoy et al., 1989; Belenguer et al., 1990; Lewin, 1990). The Ser/Thr-Pro motif in this consensus is obviously well represented in the CTD repeats. One possibility that derives from these facts is that the residual CTD phosphorylating activity present in yeast *ctk1* mutant cells could be due to CDC28. On the other hand, only nine of fiftytwo CTD repeats in mammals, and one of twenty-six repeats in yeast, contain basic residues. Interestingly, the p34^{cdc2/CDC28}-containing CTD kinase from mouse cells appears to prefer the CTD repeats that contain basic residues (Zhang and Corden, 1991a). In apparent contrast, the CTK1-containing yeast CTD kinase is not active toward histone H1 (Lee and Greenleaf, 1989), which is a good CDC28 substrate. Conversely, while a CDC28-containing kinase from yeast actively phosphorylates histone H1, as expected, it does not phosphorylate the β -Gal-CTD fusion protein (Y-FP) we used as substrate to purify yeast CTD kinase (S. Reed, personal communication).

In addition to the enzymes purified from yeast and mouse cells, CTD phosphorylating activities have been partially purified from HeLa and plant cells (see Introduction); the complete purification of these activities is needed to determine their molecular identities, and additional characterizations of all these kinases will be required to determine the possible relationships among them. Meanwhile, in view of the inhibition by DRB of a partially purified HeLa CTD kinase activity (Stevens and Maupin, 1989), we tested this nucleotide analogue for effects on the yeast enzyme; it neither inhibited nor stimulated yeast CTD kinase. In addition, we have tested a short synthetic repeat peptide (4 heptamers) as substrate for our yeast CTD kinase and find that while this short peptide is phosphorylated by the enzyme, the Km is ca. 100-fold higher than for the fusion protein containing 26 repeats (unpublished results). While additional studies are needed, these results suggest that the yeast CTD kinase favors long repeat units (the observed difference is more than the 7-fold difference in the number of repeats present in the short and long substrates). It will be instructive to obtain similar information for the CTD phosphorylating activities identified in or purified from other organisms.

The predicted secondary structure of CTK1 suggests a catalytic central domain (II) with two very hydrophilic N- and C-terminal extensions (domains I and III). Genetic studies reported here provide evidence that domain I plays an important role in vivo, because versions of CTK1 with this domain removed failed to rescue phenotypes caused by CTK1 gene disruption. At least one role for domain I is probably to localize the CTD kinase in the nucleus, since we have shown directly that it contains a nuclear targeting signal. Other possible roles are suggested by its structure and sequence. The

amino terminal domain I is rich in serine residues in a region with numerous positive charges, indicating that it might contain phosphorylation sites and play a regulatory role influencing CTD kinase activity. We suggest that the many positively charged residues in this domain might interact with phosphate groups being added to the CTD substrate, allowing the enzyme to act processively. This suggestion seems plausible in that the CTD substrate is itself probably an extended structure and when partially phosphorylated might interact effectively with an extended, positively charged domain I. The actual structures and functions of domains I and III remain to be elucidated by further biochemical and genetic investigations.

Gene disruption experiments revealed that cells lacking CTD kinase remained viable at the normal growth temperature of 30°C, although they grew slowly. However, unlike wild type yeast, the ctk1 mutant cells were inviable at lower temperatures, such as 12°. Thus the CTK1 gene product, and by extension the CTD kinase, is required for normal growth. Western blot experiments revealed that the *ctk1* mutant cells contained slower migrating, phosphorylated forms of the largest RNA polymerase II subunit, indicating that another protein kinase capable of phosphorylating the CTD is present in yeast cells. However, our results indicate that the extent and/or pattern of CTD phosphorylation differ between wild type and *ctk1* mutant strains, arguing that CTK1-containing CTD kinase normally plays a role in phosphorylating the CTD in vivo. Furthermore the slow-growth, cold sensitivity phenotype of ctk1 mutant strains suggests that the activity of the additional kinase is not sufficient by itself to support wild type growth. Available data do not allow us to decide whether or not the additional activity normally participates in CTD phosphorylation in vivo.

We should emphasize that much additional analytical work, including development of improved assays, is required to describe in detail CTD phosphorylation patterns in both wild type and mutant cells. The immunoblot assays used here have several limitations. For example, the reduced mobility of subunit "II_o" in SDS gels indicates addition of multiple phosphate groups, but it does not provide a detailed picture of either the extent or pattern of the phosphorylation (e.g., Corden, 1990). In addition, we find that while we reproducibly detect subunit form II_o, its relative amount and the extent of its mobility shift can differ depending on several variables, including the method and rapidity of extract preparation, the freezing history of the cells, the presence of phosphatase inhibitors, and the genetic background. Once the analytical methods are improved, it will be of some interest to investigate in more detail the physiology of RNA polymerase IIO.

Understanding the in vivo role of CTD phosphorylation and clarifying the relationship between the characterized CTD kinase and the additional CTD phosphorylating activity would be facilitated by having available mutant versions of genes encoding the additional enzyme. The phenotypes of ctk1 mutant cells provide several approaches for identifying mutations in and subsequently cloning of such genes. For example, mutations that inactivate the additional kinase activity in a ctk1 background might result in a synthetic lethal phenotype. Serendipity has already provided candidates for such mutations, because among the meiotic products of diploid strain SGY65 transformed with the disrupted CTK1 gene were haploid ctk1 strains that not only grew slowly and were cold sensitive, but were also temperature sensitive (J. M. L., unpublished). Introducing the wild type CTK1 gene into these strains rescued both the cs/slow-growth and ts phenotypes. One possible basis for this phenotype would be a ts mutation in the additional CTD phosphorylating activity. Attempts to clone the gene carrying this ts synthetic lethal mutation are under way.

Yeast genetics provides additional approaches to identifying activities that affect CTD phosphorylation or interact with CTD kinase in vivo. For example, extragenic suppressors of *ctk1* mutations could potentially identify genes for phospho-protein phosphatase activities. Indeed, genetic data consistent with in vivo interactions between the gene product of *SIT4*, a putative phospho-protein phosphatase, and pol II have been reported (Arndt et al., 1989). Whether or not the SIT4 gene product interacts directly with pol II and whether or not it is involved in dephosphorylating the CTD are currently unanswered questions.

Models for the involvement of CTD phosphorylation in the process of initiation have been proposed based on the observation that phosphorylation of the CTD accompanies initiation at the adenovirus major late promoter in vitro (e.g., Laybourn and Dahmus, 1990; Payne et al., 1989). However, because pol II lacking the CTD operates as efficiently at this promoter in vitro as intact pol II, it is difficult currently to evaluate the physiological significance of the observed phosphorylation. In order to assess the functional significance of these intriguing observations, a transcription system which responds to the presence and phosphorylation state of the CTD will be required.

The in vitro transcription results comparing pol II either carrying or lacking the CTD are consistent with the idea that at several promoters the CTD does not interact with basal transcription factors. In addition, two recent reports suggest that at this type of promoter some regulatory factors can exert their influence in vitro on polymerase II lacking the CTD (Zehring and Greenleaf, 1990; Buratowski and Sharp, 1990). On the other hand, several in vivo experiments suggest interactions between the CTD and certain regulatory factors. For example, transcription by polymerases with CTDs of different lengths can be affected differently by GAL4 derivatives with activation domains of different strengths (Allison and Ingles, 1989). It has also been observed that partially truncating the CTD reduces the stimulation of transcription mediated by INO1 and GAL10 UAS elements, but not by the HIS4 UAS (Scafe et al., 1990). In this case the response to the UAS signals decreased as the length of the CTD decreased, although the sensitivities of INO1 and GAL10 differed. In a follow-up study, decreased response of CTDshortened Pol II to acidic activators has been observed in nuclear extracts (R. Young, personal communication). Finally, a recent genetic study reveals that consequences of CTD shortening can be counteracted by inactivation of the SIN1 gene, which encodes a negative regulator of transcription, indicating formal genetic interaction between SIN1 and the CTD (Peterson et al., 1991). Together these studies suggest that the CTD may interact with certain transcription factors to mediate or modulate their activities. In fact, a genetic approach to identifying such factors has been described (Nonet and Young, 1989). Whether the interactions suggested by the in vivo studies are direct or indirect is not yet known. In the context of this paper it is also important to point out that we do not know if these interactions involve the phosphorylated or unphosphorylated form of the CTD. Resolving these unknowns and determining actual mechanisms will require developing novel biochemical approaches in addition to proceeding with more genetic studies.

The results presented here demonstrate that the CTK1 gene encodes the α subunit of the CTD kinase we previously characterized, that this kinase is essential for normal growth of S. cerevisiae, and that in the absence of this kinase phosphorylation of the CTD in vivo is abnormal. Considered together with the specificity and processivity displayed by the purified enzyme, these findings support the idea that the CTK1-containing CTD kinase normally plays a role in phosphorylating the CTD in vivo. We can now hope to exploit available genetic and biochemical tools to examine how this CTD kinase and other activities determine the phosphorylation state of the CTD and how that in turn influences gene expression by modulating the properties of RNA polymerase II.

Acknowledgments

This work was supported by NIH grant GM40505.

We thank John Weeks for extensive help with computer analyses; Steven Reed for CDC28 peptide, antibody, and results; Stephen Garrett for much useful advice, help, and materials; Akio Sugino for libraries and blots; Kerstin Leuther for help with tetrads; Rick Young for sharing results, ideas, and suggestions; Steven Hardin and John Weeks for useful comments; C. Peterson and I. Herskowitz for sharing strains and results; and J. Jaehning for RNA polymerase.

The sequence data reported in this paper have been submitted to GenBank and have been assigned accession number M69024.

The costs of publishing this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC Section 1734 solely to indicate this fact.

References

- L. A. Allison, M. Moyle, M. Shales, and C. J. Ingles (1985), Cell 42, 599-610.
- L. A. Allison, J. K. Wong, V. D. Fitzpatrick, M. Moyle, and C. J. Ingles (1988), Mol Cell Biol 8, 321–329.
- L. A. Allison and C. J. Ingles (1989), Proc Natl Acad Sci USA 86, 2794-2798.
- D. Arion, L. Meijer, L. Brizuela, and D. Beach (1988), Cell 55, 371–378.
- K. T. Arndt, C. A. Styles, and G. R. Fink (1989), Cell 56, 527–537.

- M. S. Bartolomei, N. F. Halden, C. R. Cullen, and J. L. Corden (1988), Mol Cell Biol 8, 330-339.
- P. Belenguer, M. Caizergues-Ferrer, J.-C. Labbe, M. Doree, and F. Amalric (1990), Mol Cell Biol 10, 3607–3618.
- G. I. Bell, P. Valenzuela, and W. J. Rutter (1977), J Biol Chem 252, 3082–3091.
- J. L. Bennetzen and B. D. Hall (1982), J Biol Chem 257, 3026-3031.
- J. M. Buhler, F. Iborra, A. Sentenac, and P. Fromageot (1976), Febs Lett 72, 37-41.
- W. O. Bullock, J. M. Fernandez, and J. M. Short (1987), Biotechniques 4, 376–379.
- S. Buratowski and P. A. Sharp (1990), Mol Cell Biol 10, 5562-5564.
- D. L. Cadena and M. E. Dahmus (1987), J Biol Chem 262, 12468-12474.
- A. M. Cigan and T. F. Donahue (1987), Gene 59, 1-18.
- L. J. Cisek and J. L. Corden (1989), Nature 339, 679-684.
- J. L. Corden (1990), Trends Biol Sci 15, 383-387.
- J. L. Corden, D. L. Cadena, J. M. J. Ahearn, and M. E. Dahmus (1985), Proc Natl Acad Sci USA 82, 7934–7938.
- M. E. Dahmus (1981), J Biol Chem 256, 3332-3339.
- G. Draetta, H. Piwnica-Worms, D. Morrison, B. Druker, T. Roberts, and D. Beach (1988), Nature 336, 738-744.
- W. G. Dunphy, L. Brizuella, D. Beach, and J. W. Newport (1988), Cell 54, 423-431.
- W. G. Dunphy and J. W. Newport (1989), Cell 58, 181–191.
- F. Estruch and M. Carlson (1990), Mol Cell Biol 10, 2544-2553.
- R. Evers, A. Hammer, J. Köck, W. Jess, P. Borst, S. Memet, and A. W. C. A. Cornelissen (1989), Cell 56, 585-597.
- M.A. Felix, P. Cohen, and E. Karsenti (1990), EMBO J 9, 675-683.
- J. Garnier, D. J. Osguthorpe, and B. Robson (1978), J Mol Biol 120, 97-120.
- J. Gautier, C. Norbury, M. Lohka, P. Nurse, and J. Maller (1988), Cell 54, 433–439.
- T. J. Guilfoyle (1989), Plant Cell 1, 827-836.
- R. Hamilton, C. K. Watanabe, and H. A. de Boer (1987), Nucl Acids Res 15, 3581-3593.
- S. K. Hanks, A. M. Quinn, and T. Hunter (1988), Science 241, 42–52.
- C. Holm, D. W. Meeks-Wagner, W. L. Fangman, and D. Botstein (1986), Gene 42, 169-173.
- T. Hyunh, R. A. Young, and R. W. Davis (1984), in DNA Cloning Techniques: A Practical Approach (D. Glover, ed.), IRL Press, Oxford, pp. 49–78.
- H. Ito, Y. Jukuda, K. Murata, and A. Kimura (1983), J Bacteriol 153, 163–168.
- R. S. Jokerst, J. R. Weeks, W. A. Zehring, and A. L. Greenleaf (1989), Mol Gen Genet 215, 266–275.

- C. Jessus, B. Ducommun, and D. Beach (1990), FEBS Lett 266, 4–8.
- J. L. Kelly, A. L. Greenleaf, and I. R. Lehman (1986), J Biol Chem 261, 10348-10351.
- W. Y. Kim and M. E. Dahmus (1986), J Biol Chem 261, 14219–14225.
- W. Y. Kim and M. E. Dahmus (1989), J Biol Chem 264, 3169–3176.
- P. A. Kolodziej, N. Woychik, S.M. Liao, and R. A. Young (1990), Mol Cell Biol 10, 1915–1920.
- W. Krek and E. A. Nigg (1989), EMBO J 8, 3071-3078.
- T. A. Kunkel (1985), Proc Natl Acad Sci USA 82, 488-492.
- J. Kyte and R. F. Doolittle (1982), J Mol Biol 157, 105-132.
- J. C. Labbe, M. Lee, P. Nurse, A. Picard, and M. Doree (1988), Nature 335, 251–254.
- P.J. Laybourn and M. E. Dahmus (1990), J Biol Chem 265, 13165–13173.
- J. M. Lee and A. L. Greenleaf (1989), Proc Natl Acad Sci USA 86, 3624–3628.
- M. Lee and P. Nurse (1988), Trends Genet 4, 287-290.
- V. Legagneux, M. Morange, and O. Bensaude (1990), Eur J Biochem 193, 121–126.
- B. Lewin (1990), Cell 61, 743-752.
- T. Maniatis, E. F. Fritsch, and J. Sambrook (1989), Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- M. D. Mendenhall, C. A. Jones, and S. I. Reed (1987), Cell 50, 927–935.
- A. O. Morla, G. Draetta, D. Beach, and J. Y. J. Wang (1989), Cell 58, 193-203.
- A. M. Myers, A. Tzagoloff, D. M. Kinney, and C. J. Lusty (1986), Gene 45, 299-310.
- M. Nonet, D. Sweetser, and R. A. Young (1987), Cell 50, 909–915.
- M. L. Nonet and R. A. Young (1989), Genetics 123, 715-724.
- P. Nurse (1985), Trends Genet 1, 51-55.
- J. M. Payne, P. J. Laybourn, and M. E. Dahmus (1989), J Biol Chem 264, 19621-19629.
- C. L. Peterson, W. Kruger, and I. Herskowitz (1991), Cell 64, 1135-1143.
- J. Pines and T. Hunter (1990), New Biol 2, 389-401.
- P. Pondaven, L. Meijer, and D. Beach (1990), Genes Dev 4, 9-17.
- J. M. Prober, G. L. Trainer, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, and K. Baumeister (1987), Science 238, 336-341.
- S. I. Reed, J. A. Hadwiger, and A. T. Lörincz (1985), Proc Natl Acad Sci USA 82, 4055-4059.

- D. C. Rio, F. A. Laski, and G. M. Rubin (1986), Cell 44, 21-32.
- A. Robbins, W. S. Dynan, A. L. Greenleaf, and R. Tjian (1984), J Mol Appl Genet 2, 343-353.
- S. Rogers, R. Wells, and M. Rechsteiner (1986), Science 234, 364–369.
- M. D. Rose, F. Winston, and P. Hieter (1990), Methods in Yeast Genetics: A Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- R. J. Rothstein (1983), Methods Enzymol 101, 202-211.
- P. Russel and P. Nurse (1987), Cell 49, 559-567.
- U. Rüther and B. Müller-Hill (1983), EMBO J 2, 1791-1794.
- F. Sanger, S. Nicklen, and A. R. Coulson (1977), Proc Natl Acad Sci USA 74, 5463-5467.
- M. Sawadogo and A. Sentenac (1990), Ann Rev Biochem 59, 711-754.
- C. Scafe, D. Chao, J. Lopes, J. P. Hirsch, S. Henry, and R. A. Young (1990), Nature 347, 491–494.
- S. Shenoy, J.K. Choi, S. Bagrodia, T. D. Copeland, J. L. Maller, and D. Shalloway (1989), Cell 57, 763-774.
- F. Sherman, G. R. Fink, and J. B. Hicks (1986), Laboratory Course Manual for Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- J. M. Short, J. M. Fernandez, J. A. Sorge, and A. Huse (1988), Nucl Acids Res 16, 7583-7600.
- P. B. Sigler (1988), Nature 333, 210-212.
- R. Sikorski and P. Hieter (1989), Genetics 122, 19-27.
- V. Simanis and P. Nurse (1986), Cell 45, 261-268.
- J. L. Smith, J. R. Levin, C. J. Ingles, and N. Agabian (1989), Cell 56, 815-827.
- A. Stevens and M. K. Maupin (1989), Biochem Biophys Res Commun 159, 508-515.
- K. Struhl (1985), Proc Natl Acad Sci USA 82, 8419-8423.
- N. E. Thompson, T. H. Steinberg, D. B. Aronson, and R. R. Burgess (1989), J Biol Chem 264, 11511– 11520.
- J. R. Weeks, D. E. Coulter, and A. L. Greenleaf (1982), J Biol Chem 257, 5884–5892.
- W. A. Zehring and A. L. Greenleaf (1990), J Biol Chem 265, 8351–8353.
- W. A. Zehring, J. M. Lee, J. R. Weeks, R. S. Jokerst, and A. L. Greenleaf (1988), Proc Natl Acad Sci USA 85, 3698–3702.
- J. Zhang and J. L. Corden (1991a), J Biol Chem 266, 2290-2296.
- J. Zhang and J. L. Corden (1991b), J Biol Chem 266, 2297-2302.